BOLTCALC Program - Example Problem (Metric Units and thread)

The attachment of the piston to the piston rod in a hydraulic cylinder is made by use of an M36 nut. The cylinder is subjected to a pressure of 150 bar, this results in a force of 117810N being applied on the rod side and -184080N on the head side of the cylinder. The piston is made from a high strength cast iron and the piston rod from an alloy steel. A 5000N residual clamp force is required to ensure that a seal is maintained between the piston and the piston rod. Details are presented of the analysis from the BOLTCALC program.

PROJECT TITLE

Calculation of a hydraulic piston to piston rod attachment.

COMMENTS

Example calculation using metric units of a piston to piston rod joint in an hydraulic cylinder.

FASTENER DETAILS

Fastener Diameter	=	36.00 mm
Thread Pitch	=	4.00 mm
Thread Pitch Diameter	=	33.402 mm
Thread Root Diameter	=	31.093 mm
Diameter related to the Thread Stress Area	=	32.247 mm
Thread Stress Area	=	816.722 mm²
Thread Root Area	=	759.280 mm²
Bearing Area under Nut/Bolt Head	=	1021.622 mm²
Fastener Outer Bearing Diameter	=	51.10 mm
Fastener Inner Bearing Diameter	=	36.20 mm
Fastener Clearance Hole Diameter	=	36.20 mm
Fastener Yield Strength	=	500.00 N/mm²
Fastener Modulus of Elasticity	=	208000.00 N/mm ²
Fatigue Endurance Limit for the Fastener	=	33.75 N/mm²
Note: The Fatigue Endurance Limit of the fa	ast	ener is based
upon the thread being machine cut.		

JOINT DETAILS

Clamped Length for the Joint	=	70.00 mm
Clamped Length to Diameter ratio	=	1.94
Load Introduction Level Factor	=	0.90
Joint Material Modulus of Elasticity	=	170000.00 N/mm ²
Amount of Embedding within the Joint	=	0.00412 mm
Limiting Surface Pressure for the Material	=	400.00 N/mm ²

DETAILS OF APPLIED FORCES

Axial force	=	117810.00 N
Direct shear force	=	0.00 N
Force required to prevent shear movement	=	0.00 N
Force required for functional reasons	=	5000.00 N
Lower value of the applied dynamic force	=	-184080.00 N

BOLT AND JOINT RESILIENCES

Fastene	er Res	ilience				=	5.806E-7	mm/N
Joint H	Resili	ence				=	1.238E-7	mm/N
Load Fa	actor					=	0.176	
Load Fa	actor	adjusted	for	Load	Introduction	=	0.158	

JOINT ASSEMBLY DETAILS

Tightening Details: Torque con	trolled tightening using
dynamic torque measurement and	precision tools. Torque value
theoretical.	
Tightening Factor	= 1.60
Thread Frictional Conditions:	
Phosphated steel external three	ad, black oxide finish on
steel internal thread, oiled.	
Thread Friction Value	= 0.120
Underhead Frictional Condition	s:
Black oxide steel nut or bolt,	oiled, machined cast iron
bearing surface.	
Nut/Bolt Head Friction Value	= 0.140

BOLT TIGHTENING ANALYSIS

Yield Point Tightening Factor specified	=	0.90
Total Tightening Torque	=	1873.58 Nm
Torque needed to extend the fastener	=	197.61 Nm
Torque needed to overcome thread friction	=	718.32 Nm
Torque needed to overcome nutface friction	=	957.65 Nm

Fastener Preload	=	310403.76 N
Direct Force that would Yield the Fastener	=	408361.18 N
Preload Loss due to Embedding	=	5855.04 N
Maximum Clamping Force required	=	176044.04 N
Minimum Clamping Force required	=	110027.53 N
Surface Pressure under the Nut Face	=	322.08 N/mm ²
Induced Alternating Stress in the Fastener	=	31.45 N/mm²
Maximum Fastener Force	=	329041.27 N
Minimum Residual Force on the Joint	=	134359.72 N
Force reducing Clamp Force on the Joint	=	99172.49 N
Force increasing the Fasteners Tension	=	18637.51 N
Tensile Stress due to Preload	=	380.06 N/mm ²

SUMMARY OF THE RESULTS

FASTENER CLAMP FORCE ANALYSIS

Fastener Preload	= 310403.76 N
Maximum Clamping Force required	= 176044.04 N
Factor of Safety	= 1.76
CONCLUSION	
The residual clamp force present when the	applied forces
have been taken into account will provide	the fastener with
a degree of resistance to loosening based	on the data
entered.	

FASTENER OVERLOADING ANALYSIS

Direct Force that would Yield the Fastener = 408361.18 N Maximum Fastener Force = 329041.27 N Factor of Safety = 1.24 CONCLUSION The force in the fastener will not exceed its yield strength based on the data entered.

FASTENER FATIGUE FAILURE ANALYSIS

Fatigue Endurance Limit for the Fastener = 33.75 N/mm² Induced Alternating Stress in the Fastener = 31.45 N/mm² Factor of Safety = 1.07 CONCLUSION The fastener should not sustain fatigue failure based upon the data entered.

SURFACE PRESSURE ANALYSIS

Limiting Surface Pressure for the Material	=	400.00	N/mm²
Surface Pressure under the Nut Face	=	322.08	N/mm²
Factor of Safety	=	1.24	
CONCLUSION			
The surface pressure calculated is within	the	quote	d
maximum value.			

OVERALL CONCLUSIONS

All safety factors are greater than unity, the defined fastener is capable of sustaining the applied forces entered by the user

Bolt Science – Expertise in Bolted Joint Technologies Bolt Science Limited 15 Isleworth Drive, Chorley, Lancashire, U.K. PR7 2PU Tel +44 (0) 1257 411503 Fax +44 (0) 1257 411650 Email info@boltscience.com URL: www.boltscience.com

BOLTCALC Program - Example Problem (Imperial Units and thread)

The attachment of the piston to the piston rod in a hydraulic cylinder is made by use of a 1.5 inch American National (UN) thread 8 threads per inch. The cylinder is subjected to a pressure of 3000 Lb/in², this results in a force of 35343 lbs being applied on the rod side and -53162 lbs on the head side of the cylinder. The piston is made from a high strength cast iron (nodular cast iron) and the piston rod from an alloy steel. A 1000lb residual clamp force is required to ensure that a seal is maintained between the piston and the piston rod. Details are presented of the analysis from the BOLTCALC program.

PROJECT TITLE

Calculation of a hydraulic cylinder to piston rod attachment

COMMENTS

Example calculation using inch sized components for a piston to piston rod joint.

FASTENER DETAILS

Fastener Diameter	= 1.500 in
Thread Pitch	= 0.125 in
Thread Pitch Diameter	= 1.419 in
Thread Root Diameter	= 1.347 in
Diameter related to the Thread Stress Area	= 1.383 in
Thread Stress Area	= 1.502 in ²
Thread Root Area	= 1.424 in ²
Bearing Area under Nut/Bolt Head	= 1.900 in ²
Fastener Outer Bearing Diameter	= 2.172 in
Fastener Inner Bearing Diameter	= 1.516 in
Fastener Clearance Hole Diameter	= 1.516 in
Fastener Yield Strength	= 75000 Lb/in ²
Fastener Modulus of Elasticity	= 30000000 Lb/in ²
Fatigue Endurance Limit for the Fastener	= 4871.519 Lb/in ²
Note: The Fatigue Endurance Limit of the fa	astener is based
upon the thread being machine cut.	

JOINT DETAILS

Clamped Length for the Joint	=	2.750 in	
Clamped Length to Diameter ratio	=	1.83	
Load Introduction Level Factor	=	0.50	
Joint Material Modulus of Elasticity	=	23500000	Lb/in²
Amount of Embedding within the Joint	=	1.592E-4	in
Limiting Surface Pressure for the Material	=	80000.00	Lb/in²

DETAILS OF APPLIED FORCES

Axial force	= 35343.00 Lb	
Direct shear force	= 0.00 Lb	
Force required to prevent shear movement	= 0.00 Lb	
Force r equired for functional reasons	= 1000.00 Lb	
Lower value of the applied dynamic force	= -53162.00 L	h

BOLT AND JOINT RESILIENCES

Fastener Resilience	=	9.206E-8	in/Lb
Joint Resilience	=	2.078E-8	in/Lb
Load Factor	=	0.184	
Load Factor adjusted for Load	Introduction =	0.092	

JOINT ASSEMBLY DETAILS

Tightening Details:	
Torque controlled tightening using dyn	amic torque
measurement and precision tools. Torqu	e value theoretical.
Tightening Factor	= 1.60
Thread Frictional Conditions:	
Phosphated steel external thread, blac	k oxide finish on
steel internal thread, oiled.	
Thread Friction Value	= 0.120
Underhead Frictional Conditions:	
Black oxide steel nut or bolt, oiled,	machined cast iron
bearing surface.	
Nut/Bolt Head Friction Value	= 0.140

BOLT TIGHTENING ANALYSIS

Yield Point Tightening	Factor specified	=	0.60
Total Tightening Torqu	e	=	1204.68 Lb-ft
Torque needed to exten	d the fastener	=	96.39 Lb-ft
Torque needed to overc	ome thread friction	=	476.27 Lb-ft
Torque needed to overc	ome nutface friction	=	632.01 Lb-ft

Fastener Preload	=	58142.45 LD
Direct Force that would Yield the Fastener	=	112621.98 Lb
Preload Loss due to Embedding	=	1410.54 Lb
Maximum Clamping Force required	=	55198.15 Lb
Minimum Clamping Force required	=	34498.84 Lb
Surface Pressure under the Nut Face	=	32311.98 Lb/in ²
Induced Alternating Stress in the Fastener	=	2861.22 Lb/in²
Maximum Fastener Force	=	61397.15 Lb
Minimum Residual Force on the Joint	=	2944.30 Lb
Force reducing Clamp Force on the Joint	=	32088.31 Lb
Force increasing the Fasteners Tension	=	3254.69 Lb
Tensile Stress due to Preload	=	38719.65 Lb/in ²

SUMMARY OF THE RESULTS

FASTENER CLAMP FORCE ANALYSIS

Fastener Preload	=	58142.45	Lb
Maximum Clamping Force required	=	55198.15	Lb
Factor of Safety	=	1.05	
CONCLUSION			

Due to the relatively small residual clamp force, the fastener will have an inherently low resistance to loosening.

FASTENER OVERLOADING ANALYSIS

Direct Force that would Yield the Fastener = 112621.98 Lb Maximum Fastener Force = 61397.15 Lb Factor of Safety = 1.83CONCLUSION The force in the fastener will not exceed its yield strength based on the data entered.

FASTENER FATIGUE FAILURE ANALYSIS

Fatigue Endurance Limit for the Fastener = 4871.52 Lb/in² Induced Alternating Stress in the Fastener = 2861.22 Lb/in² Factor of Safety = 1.70CONCLUSION The fastener should not sustain fatigue failure based upon the data entered.

SURFACE PRESSURE ANALYSIS

Limiting Surface Pressure for the Material = 80000.00 Lb/in² Surface Pressure under the Nut Face = 32311.98 Lb/in² = 2.48 Factor of Safety CONCLUSION

The surface pressure calculated is within the quoted maximum value.

OVERALL CONCLUSIONS

All safety factors are greater than unity, the defined fastener is capable of sustaining the applied forces entered by the user.

Bolt Science – Expertise in Bolted Joint Technologies Bolt Science Limited 15 Isleworth Drive, Chorley, Lancashire, U.K. PR7 2PU Tel +44 (0) 1257 411503 Fax +44 (0) 1257 411650 Email info@boltscience.com URL: www.boltscience.com